

Porous Asphalt Pavements – Not Just for Parking Lots Anymore!

Charles W. Schwartz
University of Maryland—College Park

VAA 2017 Fall Asphalt Conference Richmond VA October 3, 2017

Porous Pavements

National Asphalt Pavement Association, IS-131

Hydrologic Characteristics:

- Subgrade infiltration rate: 0.1 to 10 inches/hour
- Time to drain, stone recharge bed: 12 to 72 hours

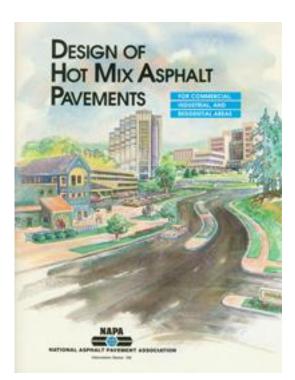
Stone Recharge Bed typical thickness: 12 to 36 inches

Scope

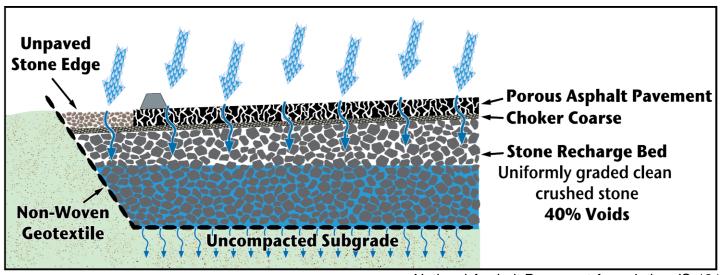
√ Structural Design of Porous Asphalt Pavements

Ensuring the Pavement Structure Can Carry the Design Traffic Loads

- X Site selection
- X Hydrologic design
- X Mixture design
- X Construction
- X Maintenance



Additional Information Sources


NAPA Information Series 131

NAPA Information Series 109

Porous Pavements

National Asphalt Pavement Association, IS-131

Porous vs. Conventional Pavements (1)

Pavement	Purpose	Material(s)	Purpose	Material(s)	
Layer	Porous Asphalt		Conventional Flexible		
Asphalt Surface	Provide stable wearing surface; allows infiltration of water to stone recharge bed	concrete;	Provide stable wearing surface; maintain ride quality; prevent water infiltration into the underlying layers; reduce traffic-induced stress/strain to underlying layers	Dense-graded asphalt concrete; low air voids (typically <8%); relatively impermeable; may have 1, 2, or 3 lifts of varying aggregate size.	

Porous vs. Conventional Pavements (2) TIONAL ASSOCIATION (2) TIONAL

	Pavement	Purpose	Material(s)	Purpose	Material(s)	
	Layer	Porous A	sphalt	Conventional Flexible		
	Base Layer(s)	"Choker Course" - stable surface for subsequent paving	Clean, single- sized crushed stone	Provide	Dense-graded crushed stone	
		"Recharge Bed" - stormwater storage	Clean, single- sized large crushed stone with high void ratio (typically ~40%)	structural capacity to pavement system; reduce traffic-induced stress/strain on		
		"Separation Layer" - prevents migration of fine subgrade materia to recharge bed	Geotextile fabric	subgrade		

Porous vs. Conventional Pavements (3)

Pavement	Purpose	Material(s)	Purpose	Material(s)	
Layer	Porous	Asphalt	Convention	nal Flexible	
Subgrade	Provide infiltration of stormwater	Natural or select material (ideally, low fines content); typically uncompacted or only lightly- compacted to promote infiltration	Provide stable platform for pavement structure	Natural or select material; typically compacted to high percentage of maximum density	

Structural Design Methodology

Empirical AASHTO Flexible Pavement Design Equation (1993):

$$\log_{10} w_{18} = z_R * s_o + 9.36* \log_{10} (SN) + 1) - 0.2 + \frac{\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]}{0.40 + \frac{1094}{(SN) + 1)^{5.19}}} + 2.32* \log_{10} M_R - 8.07$$

SN = required Structural Number (structural capacity) of the pavement

 w_{18} = number of 18-kip equivalent single axle loads (ESALs) expected over design life z_R = standard normal deviate (level of design reliability)

 s_0 = standard deviation

⊗PSI = allowable change in the Present Serviceability Index (PSI) over design life

 M_R = subgrade resilient modulus (psi)

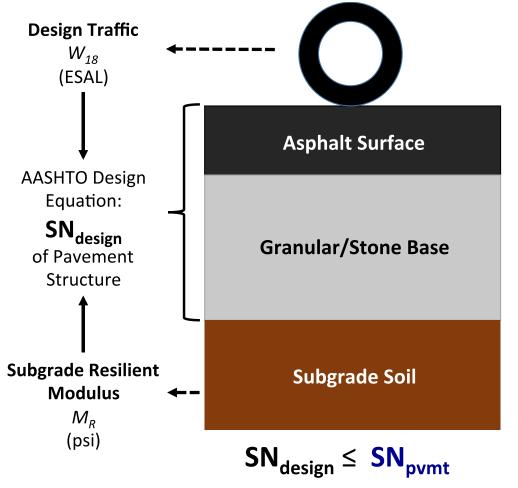
Structural Design Methodology

Empirical AASHTO Flexible Pavement Design Equation (1993):

Empirical AASHTO Flexible Pavement Design Equation (1993):
$$\log_{10} w_{18} = z_R * s_o + 9.36* \log_{10} (SN) + 1) - 0.2 + \frac{\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]}{0.40 + \frac{1094}{(SN) + 1)^{5.19}}} + 2.32* \log_{10} M_R - 8.07$$

$$SN = \text{design Structural Number of the pavement} = DESIGN OUTPUT$$

SN = design Structural Number of the pavement = DESIGN OUTPUT $SN = D_1 a_1 + D_2 a_2 m_2$


 D_1 = thickness of asphalt layer

 a_1 = structural layer coefficient for asphalt

 D_2 = thickness of granular base (stone recharge bed)

 a_2 = structural layer coefficient for granular base

 m_2 = moisture/drainage coefficient for granular base

a_i = structural coefficient
 d_i = thickness (in)
 m_i = drainage coefficient

$$a_1 * d_1 = SN_1$$

$$+$$
 $a_1 * d_1 * m_2 = SN_1$

$$SN_1 + SN_2 = SN_{pvmt}$$

Structural Design Inputs (1)

AASHTO Design Equation: Design Traffic w_{18} (ESALs)

Use existing agency procedure for estimating design traffic or the NAPA Traffic Classifications:

Type of facility and vehicle types	Maximum trucks per month (one lane)	Traffic class	Design period (years)	Design ESALs
Residential driveways, parking stalls, parking lots for autos and pickup trucks.	<1	Class I	5 10 15 20	3,000 3,000 5,000 7,000
Residential streets without regular truck traffic or city buses; traffic consisting of autos, home delivery trucks, trash pickup, occasional moving vans, etc.	60	Class II	5 10 15 20	7,000 14,000 20,000 27,000
Collector streets, shopping center delivery lanes; up to 10 single-unit or 3-axle semi-trailer trucks per day or equivalents; average gross weights should be less than the legal limit.	250	Class III	5 10 15 20	27,000 54,000 82,000 110,000
Heavy trucks; up to 75 fully loaded 5-axle semi-trailer trucks per day; equivalent trucks in this class may included loaded 3-axle and 4-axle dump trucks, gross weights over 40,000 lbs.	2200	Class IV	5 10 15 20	270,000 540,000 820,000 1,100,00

NAPA Information Series 109, Design of Hot-Mix Asphalt Pavements for Commercial, Industrial, and Residential Areas

Structural Design Inputs (2)

AASHTO Design Equation: Reliability, Standard Deviation, APSI

Design Reliability

Reliability (%)	Std Normal Deviate, Z _R
50	0.000
75	-0.674
80	-0.842
90	-1.282
95	-1.645
99.99	-3.719

Standard Deviation

Typical values for the AASHTO flexible pavement equation:

0.42 - 0.49

ΔPSI

$$\Delta PSI = p_0 - p_t$$

p₀ Initial serviceability index;typical values: 4.2 – 4.5

o_t Terminal serviceability index; typical values: 2.0 – 2.5

> Typical Values for $\triangle PSI$: 2.0 – 2.5

Structural Design Inputs (3)

AASHTO Design Equation: Subgrade Resilient Modulus M_R

- Resilient modulus for existing subgrade soil
 - NAPA Subgrade Classification Guide (next slide)
- Typical modulus values in NAPA table be reduced by 25 to 50%
 - Subgrades typically uncompacted/lightly compacted
 - Subgrades typically at higher moisture contents
- Composite subgrade modulus for structural pavement design
 - Accounts better for thick stone recharge bed
 - Procedure described later

Subgrade Classification Guide with Typical Resilient Modulus (M_R) Values

NAPA Information Series 109, Design of Hot-Mix Asphalt Pavements for Commercial, Industrial, and Residential Areas (2002)

Soil Type	Unified Soil Class	Percent Finer Than 0.02mm	Permeability	Frost Potential ¹	Typical CBR ²	Design Class	Typical Flexible Pavement M _r (psi) ²	Recommended Porous Pavement M _r (psi) ²
Sands, sand-gravel mix Little or no fines <0.02mm	SW,SP	0 – 3	Excellent	NFS	17	Very Good	20,000	20,000
Sands, sand-gravel mix Some fines <0.02mm	SW,SP	1.5 – 3	Good	PFS	17	Very Good	20,000	20,000
Sandy soils Medium fines <0.02mm	SW,SP,SM	3 – 6	Fair	Low	8	Good	12,000	9,000
Silty gravel soils High fines <0.02mm	GM GW-GM,GP- GM	6 – 10 10 - 20	Fair to Low	Medium	8	Good	12,000	9,000
Silty sand soils High fines <0.02mm	SM SW-SM,SP- SM	6-15	Fair to Low	Medium	8	Good	12,000	9,000
Clayey sand soils High fines <0.02mm	SM,SC	Over 20	Low to Very Low	Medium to High	5	Medium	7,500	3,750
Clays, PI>12	CL,CH		Very Low	High ³	3	Poor	4,500	2,250
All silt soils	ML,MH		Very Low	High to V.High ³	3	Poor	4,500	2,250
Clays, PI<12	CL,CL-CM		Very Low	High to V.High ³	3	Poor	4,500	2,250

¹NFS = not frost susceptible; PFS = possible frost susceptible

(Excerpts)

²CBR = California Bearing Ratio and Mr = Resilient Modulus values are minimum values expected for each subgrade class

³Replace in severe frost areas

Structural Design Inputs (4)

AASHTO Design Equation: Layer coefficients ai

AsphaltSurface

ATPB²

Porous Asphalt Surface: $a_1 = 0.40$

- Typically placed at low densities
- Typically features open gradations

Asphalt-Treated Permeable Base (ATPB): $a_2 = 0.30$ to 0.33 (if present)

Aggregate Base? (Stone Recharge Bed)?

Coarse Aggregate Base (Stone Recharge Bed): $a_2 = 0.07$ to 0.10

- Typically placed at high void contents (lower stiffness, e.g. 15 ksi)
- AASHTO stiffness relationship for granular base:

$$a_2 = 0.247(\log_{10}E_{\text{base}}) - 0.977$$

Subgrade Soil 2

Structural Design Inputs (5)

AASHTO Design Equation: Drainage coefficient m₂

Applies to unbound materials only (Coarse Aggregate Base [Stone Recharge Bed])

• AASHTO relationship based on "quality" of drainage (time to drain) and percent time near saturation For Porous Asphalt pavements:

- Assumed drainage quality is GOOD (water removed in ~1 day)
- Assumed time near saturation is 5-25%

Aggregate Base? (Stone Recharge Bed)

Quality of Drainage	Water Removed Within	Percent of Time Pavement is Exposed to Moisture Levels Approaching Saturation					
		<1%	% >25%				
Excellent	2 hours	1.40-1.35	1.35-1.30	1.30-1.20	1.20		
Good	1 day	1.35-1.25	1.25-1.15	1.15-1.00	1.00		
Fair	1 week	1.25-1.15	1.15-1.05	1.00-0.80	0.80		
Poor	1 month	1.05-0.80	1.05-0.80	0.80-0.60	0.60		
Very Poor	> 1 month	0.95-0.75	0.95-0.75	0.75-0.40	0.40		

For porous pavement design, use $m_2 = 1.0$ for all situations

 $SN_1 = 2.4$

6" Asphalt Surface (a = 0.40)

 $SN_1 = 2.4$

Semi-Infinite "Subgrade"

similar to

Stone Recharge Bed $(M_R = 20,000 psi)$ (a = 0.10)

From the AASHTO Design Equation: Reliability = 75% ($z_R = -0.674$) Std. Deviation (So) = 0.45 Change in PSI (Δ PSI) = 2.5 (p₀=4.5; p₊=2.0) Subgrade Modulus (M_R) = 20,000 psi Structural Number (SN) = 2.40

→ Allowable Traffic 2.3M ESALs

Stone Recharge Bed $(M_R = 20,000 psi)$

(a = 0.10)

36"

 $SN_2 = 3.6$

Uncompacted Subgrade $(M_R = 4000 \text{ psi})$

From the AASHTO Design Equation: Reliability = 75% ($z_R = -0.674$) Std. Deviation (So) = 0.45 Change in PSI (Δ PSI) = 2.5 (p₀=4.5; p_t=2.0) Subgrade Modulus (M_R) = 4000 psi Structural Number (SN) = 6.0

→ Allowable Traffic 41.5M ESALs!!

A Problem...

How can a weaker pavement section carry 20x more traffic??

These two cross-sections are **<u>structurally</u> equivalent** based on equal surface deflections from an applied load.

Burmister's Equation For 2-layer systems:

$$w_o = \frac{1.5 \, qa}{E_2} F_2$$

Burmister's Equation For 1-layer systems:

$$w_o = \frac{1.5qa}{F}$$

Composite Subgrade Concept

The analysis is based on elastic layer theory; the two-layer (stone over subgrade) system is converted to a one-layer ('composite' subgrade) system.

where:

 w_0 = surface deflection (in)

q = applied load (psi)

a = load diameter (in)

E = single-layer modulus

 E_2 = 'layer 2' modulus in 2-layer system (uncompacted subgrade)

 F_2 = Burmister's 2-layer deflection factor

Deflection of Two-Layer System

Surface Deflection:

$$w_o = \frac{1.5qa}{E_2} F_2 = \frac{(1.5)(100 \text{ psi})(5.35 \text{ in})}{4000 \text{ psi}} (0.32) = 0.0642 \text{ in}$$

$$E_1/E_2 = 20,000 \text{ psi} / 4,000 \text{ psi} = 5.0$$

 $h_1/a = 19 \text{ in} / 5.35 \text{ in} = 3.55$

Composite Subgrade Stiffness of Equivalent One-Layer System

Composite Subgrade (M_R = ???) Surface Deflection for One-Layer System:

$$w_0 = \frac{1.5qa}{E}$$

Equivalent Composite Subgrade for One-Layer System:

$$E = \frac{1.5qa}{w_0} = \frac{1.5(100 \text{ psi})(5.35 \text{ in})}{0.0642 \text{ in}} = 12,500 \text{ psi}$$

Effective Thickness of Base Layer

Maximum base thickness at AASHO Road Test was 9 inches!

Structural Design Methodology

Empirical AASHTO Flexible Pavement Design Equation (1993):

$$\log_{10} w_{18} = z_R * s_o + 9.36* \log_{10}(SN) + 1) - 0.2 + \frac{\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]}{0.40 + \frac{1094}{(SN) + 1)^{5.19}}} + 2.32* \log_{10} M_R - 8.07$$

$$SN = \text{design Structural Number of the payement} = -0.3 + 0.3 m$$

$SN = design Structural Number of the pavement = = <math>D_1a_1 + D_2a_2m_2$

 w_{18} = number of 18-kip equivalent single axle loads (ESALs) expected over design life z_R = standard normal deviate (level of design reliability)

 s_0 = standard deviation

 $\Delta PSI =$ allowable change in the Present Serviceability Index (PSI) over design life $M_{\rm p}$ = subgrade resilient modulus (psi)

Minimum Porous Asphalt Thickness (1)

Given:

- Design traffic (project specific): 3M ESALs (Heavy Trucks)
- Allowable deterioration (typical values and/or agency policy):
 - \circ \otimes PSI = **2.5** (Initial PSI p₀ = 4.5; Terminal PSI p_t = 2.0)
- Reliability parameters (typical values and/or agency policy):
 - Reliability: **75%** $(Z_R = -0.674)$
 - Standard Deviation: 0.45
- Stone recharge bed → layer to be protected by asphalt layer
 - Resilient Modulus: 20,000 psi

Solve AASHTO Flexible Pavement Design Equation: $SN_1 = 2.55$

Minimum asphalt thickness: $D_1 = SN_1/a_1 = 6.4$ in., use $D_1 = 6$ inches

Minimum Porous Asphalt Thickness (2) NATIONAL ASPHALT

W ₁₈ ₫(ESALs)፻	Minimum Porous Asphalt Thickness inches)
50,000?	3.0?
100,000?	3.52
250,0002	4.02
500,0002	4.52
750,0002	5.0?
1,000,0002	5.52
2,000,0002	6.02
4,000,0002	6.52

?

 $(a_1 = 0.1, E_{base} = 20,000 \text{ psi}, 75\% \text{ reliability}, s_0 = 0.45, \Delta PSI = 2.5)$

(1) Design For **Hydrologic** Capacity (not covered here) $D_1 = 6$ " $D_2 = 19$ "

6" Asphalt Surface* $(a_1 = 0.40)$

19" **Stone Recharge Bed** $(M_R = 20,000 \text{ psi})$ $(a_2 = 0.10)$

> Uncompacted Subgrade $(M_{\rm p} = 4000 \, \rm psi)$

(2) Determine Composite Subgrade Modulus (see previous slides) M_{P} (existing) = 4000 psi M_R (composite) = 12,500 psi

> ?" Asphalt Surface $(a_1 = 0.40)$

"Composite" Subgrade $(M_R = 12,500 \text{ psi})$ (3) Determine Required for Future Traffic (SN_{design})

Structural Number (see previous slides)

 $W_{18} = 3.0M ESAL$

R = 75% (
$$Z_R$$
 = -0.674)
S₀ = 0.45
 Δ PSI = 2.5

USE $M_R = 12,500 \text{ psi}$ (composite M_R)

 $SN_{design} = 2.94$

Determine Required Porous Asphalt Thickness (D_1)

$$SN_{design} = SN_1$$

 $SN_1 = D_1^*a_1$
 $SO...$
 $D_1 = SN_1/a_1$
 $= 2.94/0.40$

$$D_1 = 7.35$$
" or $D_1 = 7.5$ " (for STRUCTURAL design)

Design Catalog Tables

For $W_{18} = 3,000,000 ESAL$

			Design Subgrade Resilient Modulus (psi)						
		2000	3000	4000	6000	8000	10000	12000	
es)	6	11.5	10	9	8	7.5	7.5	7	
(inches)	12	10	8.5	8	7.5	7	7	6.5	
_	18	8.5	8	7.5	7	7	7	6.5	
ess	24	8	7.5	7.5	7	7	6.5	6.5	
Thickness	30	7.5	7.5	7	7	6.5	6.5	6.5	
	36	7.5	7	7	7	6.5	6.5	6.5	
G	42	7	7	7	6.5	6.5	6.5	6.5	

NAPA NATIONAL ASPHALT

(For thin bases, also use conventional AASHTO design and take most conservative case)

Required Porous Asphalt Thickness

6.5

6.5

6.5

Design Assumption for Catalog Tables:

48

- $a_1 = 0.40$ (porous asphalt)
- $a_2 = 0.10$ (stone base)
- $E_{\text{base}} = 20,000 \text{ psi (stone base)}$ $\Delta PSI = 2.5$
- 75% reliability ($Z_R = -0.674$)

6.5

- $s_0 = 0.45$ (overall variability)
- $\Delta PSI = 2.5$ (allowable serviceability decrease)
- a = 5.35 in (load radius)
- q = 100 psi (load pressure)
 Values for composite subgrade modulus computation

6.5

Contact Info:

Dr. Charles W. SchwartzUniversity of Maryland schwartz@umd.edu +1.301.405.1962

